Math 270: Differential Equations Day 12 Part 2

Section 4.6: Variation of Parameters Part 1

Variation of Parameters if another method of guessing a particular y_p solution to ay'' + by' + cy = f(t)

Idea:

- 1) If y_1 and y_2 are 2 independent solutions to ay'' + by' + cy = 0, then we know all to ay'' + by' + cy = 0 is $y = Ay_1 + By_2$ where A and B are **constants**
- 2) We seek a particular solution to ay'' + by' + cy = f(t) of the form $y_p = v_1y_1 + v_2y_2$ where v_1 and v_2 are **functions of** t
- 3) How can we find v_1 and v_2 ?

Derive equations to find v_1 and v_2 ...to find 2 unknown functions, we need 2 equations

Derive equations to find v_1 and v_2 ...to find 2 unknown functions, we need 2 equations

Method of Variation of Parameters

To determine a particular solution to ay'' + by' + cy = f:

(a) Find two linearly independent solutions $\{y_1(t), y_2(t)\}$ to the corresponding homogeneous equation and take

$$y_p(t) = v_1(t)y_1(t) + v_2(t)y_2(t)$$
.

(b) Determine $v_1(t)$ and $v_2(t)$ by solving the system in (9) for $v'_1(t)$ and $v'_2(t)$ and integrating.

(9)
$$y_1v_1' + y_2v_2' = 0$$
$$y_1'v_1' + y_2'v_2' = \frac{f}{a}$$

(c) Substitute $v_1(t)$ and $v_2(t)$ into the expression for $y_p(t)$ to obtain a particular solution.

Example 1 Find a general solution on $(-\pi/2, \pi/2)$ to $\frac{d^2y}{dt^2} + y = \tan t$.

Example 2 Find a particular solution on $(-\pi/2, \pi/2)$ to $\frac{d^2y}{dt^2} + y = \tan t + 3t - 1$.